Statistical Methods, part 1 Module 2: Latent Class Analysis of Survey Error Models for measurement errors

> Dan Hedlin Stockholm University November 2012

Acknowledgement: Paul Biemer

The most interesting error

- $\hat{Y} Y$
- That is, the difference between estimate and what you desire (truth, value obtained with the ideal method, population parameter, or however the desired aim is envisaged)
- Is this difference regularly published?
- What is the established term for this difference?

Why variance?

 Why do we base our statistical theories on concepts like variance, bias etc, which are advanced constructs?

Why in this course?

- Measurement errors can rarely be observed
- You have to draw conclusions (make inference) about something unobservable
- Models play a crucial role in this inference process
- Quantitative research usually faces measurement errors
- Rather neglected in practical work

Scenarios

- 1. True values/gold standard values of a random subsample of sample
- 2. Dependent or independent measurements of a random subsample of sample
- One sample with several variables measured once, although with measurement error (most common and least favourable situation)

Gold standard

- Gold standard (error-free) measurements
 - In-depth reinterviews with probing
 - Assumption: error in second measurement is negligible or relatively inconsequential
 - Record check studies
 - Direct observation (or close to it)
 - However, gold standard has sometimes been shown to be 'silver standard' at best. See references in Biemer's book, page 67

- Direct estimation of measurement bias requires true values or gold standard measurements
- If you have a sample of values with measurement errors, y_i, and true scores for each, τ_i, then the difference y_i -τ_i is like a new variable. The variance of the difference is the same as the variance of y_i (why?)

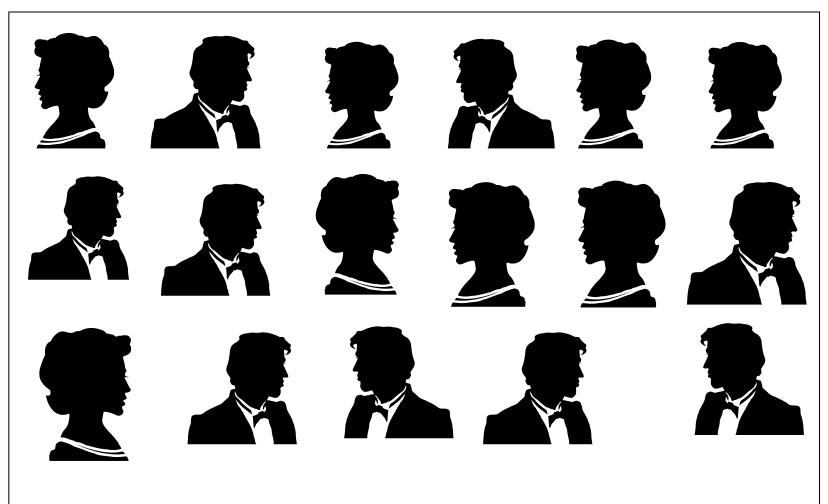
Classical Test Theory

- The following pages describe the 'classical test theory model'
- From psychometrics
- No gold standard required
- Used in surveys
- In other applied areas of statistics other models are more popular (ANOVA type of models)

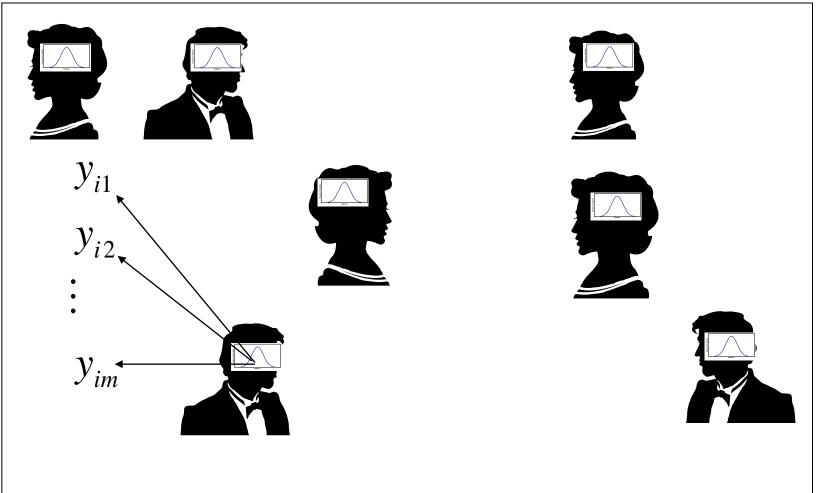
Conceptual Development

- Hypothetical distribution of responses for each individual in the population
- Individuals represent "clusters" of "potential" responses
 - Analogous to 2-stage sampling
- The response process is analogous to twostage cluster sampling using SRS at each stage
- The first-stage design can be more complex than SRS, classical test theory will still be useful

Clusters are Persons Responses are Nested within Persons



Sample Persons and then Response from within Persons



'True score'

- Not the same true value
- True score is average of responses from individual i
- Can be influenced by for example change of mode of interview or by pictures on the questionnaire

- Individuals may be viewed as equal size clusters of potential responses to a question; i.e., Primary Sampling Units (PSUs)
- n = number of persons in the sample
- *m* = number of observations made on each person
- A response to an interview question essentially selects a response from an individual randomly and independently (*m* = 1 response)
- For an interview-reinterview survey, cluster sample size is m = 2

A Measurement Model Based Upon Two-Stage Cluster Sampling: "Census Bureau" Model

- First stage = individual in the population, i = 1, ..., N
- Second stage, infinite number of possible measurements (or trials) on the individual
- SRS at both stages (can be relaxed)
- Negligible sampling fraction at second stage (i.e., m/M <<1 or essentially unlimited number of hypothetical responses within person)

'Parallel measures'

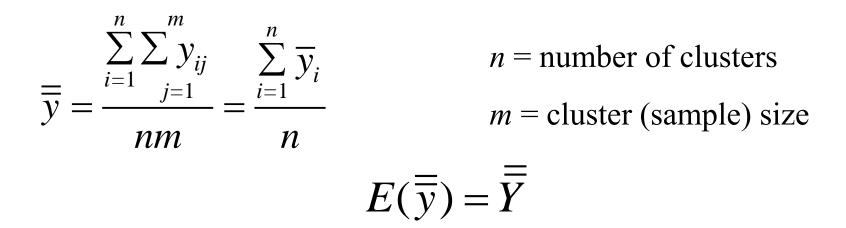
- All measurements (ie what people may say as an answer to a question) are indicators of the same construct (ie same variable)
- They are taken from the same distribution

• Then they are independent and identically distributed (iid). Tall order.

A Measurement Model Based Upon Two-Stage Cluster Sampling: "Census Bureau" Model (cont'd)

- Want to estimate $\overline{Y} = \sum_{i=1}^{N} \tau_i$
- where τ_i is average of the infinite number of responses from individual *i*
- (Well, we would have wanted the true value...)

Review of Formulas for Two-Stage Cluster Sampling (Cochran, 1977, Chapter 10)



For negligible sampling fraction at the second stage

$$Var(\overline{\overline{y}}) = (1 - f)\frac{S_1^2}{n} + \frac{S_2^2}{nm}$$
$$v(\overline{\overline{y}}) = (1 - f)\frac{S_1^2}{n} + f\frac{S_2^2}{m} \cong \frac{S_1^2}{n}, \text{ if } f < < h$$

Review of Formulas for Two-Stage Cluster Sampling (cont'd)

$$S_{1}^{2} = \sum_{i=1}^{N} \frac{(\overline{Y}_{i} - \overline{\overline{Y}})^{2}}{N - 1}$$

$$S_2^2 = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} (y_{ij} - \overline{Y}_i)^2}{N(M-1)}$$

$$s_1^2 = \frac{\sum_{i=1}^n (\overline{y}_i - \overline{\overline{y}})^2}{n - l}$$

$$s_2^2 = \frac{\sum_{i=1}^n \sum_{j=1}^m (y_{ij} - \overline{y}_i)^2}{n(m-1)}$$

For Measurement Error Applications

The formulas on previous slide can be directly applied to the measurement error problem.

$$\operatorname{Var}(\overline{\overline{y}}) = (1-f)\frac{S_1}{n} + \frac{S_2}{nm} = (1-f)\frac{\operatorname{SV}}{n} + \frac{\operatorname{SRV}}{nm}$$

SV = S_1^2 i.e., "sampling variance SRV = S_2^2 i.e., "simple response variance"

$$Var(\overline{\overline{y}}) \stackrel{\circ}{=} v(\overline{\overline{y}})$$

Some implications

$$\operatorname{Var}(\overline{\overline{y}}) = \frac{\operatorname{SV}}{n} + \frac{\operatorname{SRV}}{nm}$$

- The variance of a mean or proportion from a SRS contains variation due to both sampling variance and response variance (note what happens when m = 1)
- Sampling variance decreases as *n* increases, i.e., precision inversely proportional to sample size
- Measurement variance decreases as both *n* and *m* increases; i.e., better precision with multiple measurements on each unit

Reliability ratio

$$R = \frac{SV}{SV + SRV}$$
 is the reliability ratio

If SRV=0 then *R*=1 (i.e. maximum value)

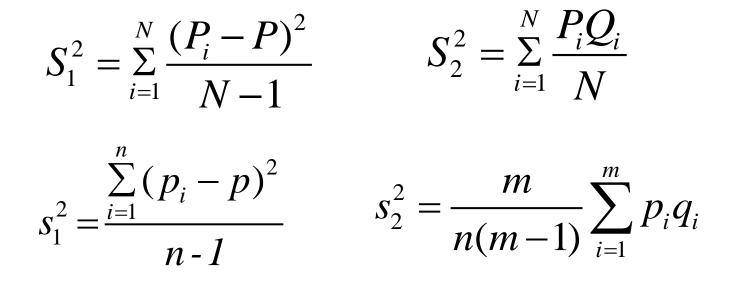
The smaller *R* is, the more the estimate will be improved by repeated measures, because then SRV is larger

Estimation of SRV

- Why do we want to estimate the *SRV* when this component is already accounted for in the usual estimate of Var(*p*)?
 - *SRV* increases Var(*p*)
 - *SRV* has implications for other analysis as well
 - E. g. measurement error may have implications for estimation of coefficients in some models

Special Formulas for Proportions

$$P = \overline{Y}; \quad Q = 1 - P; \quad P_i = \overline{Y}_i; \quad Q_i = 1 - P_i;$$
$$p = \overline{\overline{y}}; \quad q = 1 - p; \quad p_i = \overline{y}_i; \quad q_i = 1 - p_i$$



Total Mean Square Error of P
for
$$m = 1$$

$$MSE(p) = [Bias(p)]^{2} + Var(p)$$
$$Bias(p) = E(p) - \pi$$
True proportion
$$= P - \pi$$
Lack of validity
Thus,

MSE(p)=(P-
$$\pi$$
)²+Var(p)
=(P- π)²+(1-f) $\frac{S_1^2}{n} + \frac{S_2^2}{n}$

This can be rewritten as

MSE(p) =
$$(P - \pi)^2 + (1 - f) \frac{SV}{n} + \frac{SRV}{n}$$

Estimation of Simple Response Variance (m=2)

Suppose m = 2 for all n (example: an interview followed by a reinterview for all cases)

$$p_i = \frac{(y_{i1} + y_{i2})}{2}$$

Then,

$$p_i q_i = \left[\frac{y_{i1} + y_{i2}}{2}\right] \left[1 - \frac{y_{i1} + y_{i2}}{2}\right]$$

It can be shown that
$$p_i q_i = \frac{(y_{i1} - y_{i2})^2}{4}$$

Hint: $y^2 = y$ for dichotomous variables

$$\therefore \sum_{i=1}^{n} p_i q_i = \sum_{i=1}^{n} \frac{(y_{i1} - y_{i2})^2}{4}$$

$$\therefore SRV = s_2^2 = \frac{1}{2n} \sum_{i=1}^n (y_{i1} - y_{i2})^2$$

Note also that

$$Var(y_i) = E(y_i - P)^2 = E(y_i^2) - P^2 = P - P^2$$

= PQ

Thus,

 $SV + SRV = PQ \stackrel{\circ}{=} pq$

Some 'science thinking'

- Is the model that the brain is a "random machine" realistic and credible?
- First, model misspecification, would that result in. As for the iid assumption, suppose the two measurements are correlated. How is the estimated variance affected?
- If the identical distribution assumption is violated?

• If the assumptions are mildly violated, is the test theory model useful anyway?